
Environment Model for Multiagent-Based
Simulation of 3D Urban Systems

Stéphane GALLAND, Nicolas GAUD,
Jonathan DEMANGE, and Abderraf́ıâa KOUKAM

Multiagent Systems Group,
System and Transport Laboratory

University of Technology of Belfort Montbéliard
90010 Belfort cedex, France

{stephane.galland,nicolas.gaud,

jonathan.demange,abder.koukam}@utbm.fr

http://set.utbm.fr

Abstract. This paper presents the JaSIM environment model. It gath-
ers experiences collected on design of the environment — as a first-class
entity — coming from both multiagent and computer graphics domains.
Its main goal consists in providing a sets of models and tools to easily
implement crowd and traffic MABS1. JaSIM integrates efficient hierar-
chical and graph-based data structures for supporting 1D to 3D actions
and perceptions of numerous agents. It provides geometrical, topological
and semantical data about environmental objects to agents. This paper
discusses the overall architecture and 3D modules of JaSIM environ-
ment model, and illustrates platform performances on two experiments.
Key words: Environment Model, Multiagent-based simulation, Urban
Simulation, 3D Environment, Bounding Volume Hierarchy.

1 Introduction

This paper introduces JaSIM2, a multiagent environment model dedicated to
multiagent-based simulation in 3D virtual environments. JaSIM is an innovative
simulation platform for implementation and deployment of urban simulations.
JaSIM follows a microscopic simulation approach and it is mainly designed
for traffic and crowd simulations. JaSIM platform is designed as an extension
of Janus [9] combining organisational agent-oriented approach of Janus with
object-oriented structure of JaSIM simulation model. This paper does not de-
tail the entire JaSIM platform but focus on its environment model. This model
tries to gather experiences collected on environment design coming from both
multiagent and computer graphics domains. It thus integrates a full set of ef-
ficient hierarchical and graph-based data structures for supporting actions and
perceptions of numerous autonomous entities. These structures are designed to

1 MABS : MultiAgent Based Simulation
2 stands for “JAva SImulation Model”

assemble geometrical, topological and semantical data in single model integrating
all information required to manage realistic behaviours of pedestrians and ve-
hicle drivers. JaSIM is designed to fully respect the key principles that govern
multiagent-based simulation such as environmental integrity constraint, agent
autonomy, and the clear distinction between agent’s mind and body [13]. It also
provides a collection of well-known design-patterns for an easy and reusable im-
plementation of traffic and crowd simulation. JaSIM supports simulations in
1D3, 2D or 3D environments, however this paper focus on the implementation
of 3D environment. The simulation in 3D environment is not always required,
in most of cases simpler environmental structures may be used [21]. However
many applications require a maximal level of accuracy and the use of a true
3D environment, mainly to enable agent 3D perception. Allowing agents to per-
ceive their world in 3D enables the simulation of complex real situations like
smoky environments, testing the visibility of security features like emergency
exit. . . Physics simulation also requires a complete 3D simulated world to enable
the computation of precise physics laws (i.e. “sub-microscopic simulation”).

This paper is structured as follows. In section 2, a brief overview of previous
works on notion of environment in situated multiagent systems is given. Section
3 introduces JaSIM environment model and detail various elements composing
this model. Section 4 provides experimental results. Finally we draw conclusions
and look at challenges for future works on JaSIM platform.

2 Related Works on Environmental Models

2.1 Background on Environment for Situated Multiagent Systems

In this article, environment is considered as a explicit part of multiagent system.
This section focus on its role in situated multiagent systems and multiagent-
based simulations. Three different points of view may be adopted to study the
notion of environment in situated MAS: environment as the external world,
environment as a medium for coordination, environment architecture [24]. This
section mainly focus on the two last perspectives.

According to Weyns et al. [24], the two types of difficulties most often re-
ported as being encountered when studying the MAS literature are: (i) the term
environment has several different meanings, causing a lot of confusion, (ii) the
functionnalities associated with the environment are often implicitly handled,
or integrated in the MAS in an ad-hoc manner. This point indicates that the
environment is failed to be considered as a first-class module.

The confusion on the environment definition is mainly caused by mixing up
concepts and infrastructure. Sometimes the environment refers as the logical en-
tity of a MAS in which the agents and other entities and resources are embedded.
Sometimes the notion of environment is refering to the software infrastructure
on which the MAS is executed or it may even refer to the underlying hardware
infrastructure on which the MAS is running.
3 1D environment: graph-based model

Environment Architecture. Ferber’s model and its extension [13] are based on
three main principles: respect the environment integrity, agent autonomy, and
clearly distinct agent’s mind from its body. In other words, an agent should not
directly modify the environment, and one agent may not decide for the others.
In this theory, an agent does not perform actions but produces influences. In-
fluences do not directly modify the environment and, from an agent point of
view, nothing can be guaranteed about their result. Applying this theory at
implementation level thus requires a two phases mechanism that firstly collects
influences: Influence phase, and then computes results of their combination: Re-
action phase. Reaction, which is managed by the environment itself, modifies the
state of the environment by combining the influences of all agents according to a
previous local state of the environment and the laws that govern the simulated
world. This clear distinction between the products of the agent’s behaviours and
environmental reactions provides a way to handler simultaneous action in MAS
and contributes to a better respect of modeling and simulation relations [25].

Beside the activity of the agents, resources or entities can produce activity in
the environment too. Maintaining such dynamics is an important functionnality
of the environment [2, 23]. Influences-Reaction model also enables modeling of
environmental endogenous dynamics by considering the environment as being
able to produce influences.

Environment as a medium for coordination. According to Odell et al. [15], “the
environment provides the conditions under which an entity (agent or object)
exists.” The authors distinguish between the physical environment and the com-
munication environment. The physical environment provides the laws, rules, con-
straints and policies that govern and support the physical existence of agents and
entities. The communication environment provides (i) the principles and pro-
cesses that govern and support exchanges of ideas, knowledge and information,
and (ii) the functions and structures that are commonly deployed to exchange
communication, such as roles, groups and interactions protocols between roles
and groups. Odell et al. [15] define an agent’s social environment as “a commu-
nication environment in which the agents interact in coordinated manner”. This
approach is shared by Ferber et al. [7] who proposed to integrate the environment
with the Agent-Group-Role organisational model.

2.2 Environment in 3D Urban Simulation

This section gives a short overview on various kinds of 3D simulation application
domains targeted by JaSIM, with a focus on environment. In this paper three
main types of urban simulation are focusing: traffic, crowd and city simulations.
City simulation refers to 3D urban simulations aiming at simulating both life
in streets and inside buildings. This implies to simulate both pedestrians and
vehicles evolving in a virtual 3D urban environment. In 3D simulation, two kinds
of data have to be clearly distinguished: the required data for rendering 3D
scene and data for supporting the simulation and enabling complex autonomous

behaviours. This section only focus on the simulation’s environment and its
associated data.

Crowd Simulation. To evolve in a virtual world and exhibit a complex behavior,
an agent requires several semantical, symbolical and topological data about its
environment. Simplest behaviors consist in avoiding static and dynamic obsta-
cles, and it thus requires only geometrical information on the various objects in
the 3D world. More complex behaviors usually depend on the nature of the ob-
jects. This requires to add semantical information into the environment model.
This semantic level intends to classify the various objects at different abstraction
levels. Finally, to enable an agent to efficiently compute the best path between
two points in the 3D world, topological informations on this world are required.
This is usually done thanks to navigation graphs that are precomputed from the
environment mesh [18]. Several platforms such as Massive [10] and Breve [12] are
interesting about the physical interactions of the simulated entities. In a word, an
environment model dedicated for crowd simulation should at least integrate three
different layers of information: structural, semantical and topological [4, 6, 22].

Traffic Simulation. In traffic simulation model, we focus on reproducing the
street life and it usually does not reflect what happens in buildings. This kinds
of simulation requires informations about the road network (graph-based struc-
ture: lanes, junctions, intersections, interchanges), its rules (priority, road-sign,
speed limits) and its neighbouring environment (building, square. . .). Semantic
informations (streets names, buildings info) are also required and have to be
added to the topological information of the road network to enable autonomous
driving behavior [17]. Usually this kinds of information is stored in a specific
database [4] generally called Urban Information System (UIS).

To conclude this section on related works, a small summary of the various
missions assigned to the environment [24] in a classical MABS in virtual envi-
ronment is provided.

M1 - Sharing informations: Environment is a shared structure for agents,
where each of them perceives and acts. Associated data are usually com-
posed of hierarchical structures gathering all the objects that make up the
virtual world and are useful to agents. The environment is thus hierarchi-
cally decomposed into a set of areas, sub-areas and so on, each area being
associated with the set of its objects. At each level of this hierarchy, objects
are themselves connected through a set of graph-based structure to main-
tain the topological information, associated to a given sets of semantics. This
gives a rise to a complex data structure that may be considered as a kind
of clustered graph. This part of the environment contains all the structures
used to organise structural, semantical and topological informations such as
graphs, octrees, quadtrees, grids, etc.

M2 - Managing agents actions and interactions: This aspect is related to
the management of agents’ simultaneous and joint actions and to the preser-
vation of the environmental integrity. For example, when two agents are

pushing the same box, the environment may compute the real location of
the box according to physics laws. On this aspect, the influence-reaction [13]
model may provide an efficient solution.

M3 - Managing perception and observation: The environment must be lo-
cally and partially observable. Thus agents can also manage the access to
environmental informations and guarantee the partialness and localness of
perceptions.

M4 - Maintaining endogenous dynamics: The environment is an active en-
tity; it can have its own processes, independently of the ones of the agents.
A typical example is the evaporation of artificial pheromones in ant colony
based algorithms.

All these missions as assumed as essential for an environment model. The
next section is dedicated to the description of the JaSIM environment model
and describes how this set of environmental missions is implemented within
JaSIM. Two constraints are integrated during the design of the environment
model: (i) agent implementations may be independent from the environment
implementation; and (ii) environment model may be modular to plug and unplug
components as required by applications.

3 JaSIM Environment Model and Platform

JaSIM environment model is a multiagent situated environment model dedi-
cated to the simulation in 1D, 2D and 3D virtual environments. It is mainly de-
signed for traffic and crowd simulations. JaSIM platform is directly designed as
an extension of the Janus platform [9] combining organisational agent-oriented
approach from Janus with object-oriented structure of the JaSIM simulation
model. This model is designed to provide realistic perception and action mecha-
nisms to agents. It is a framework4 providing a collection of well-known design-
patterns for an easy and reusable implementation of traffic and crowd simulation.

This section is structured as follows. Subsections 3.1 describes the overall
architecture of the JaSIM platform and the various features provided by each
module. Subsection 3.2 describes the key principles and concepts of the JaSIM
simulation model.

3.1 Overall Architecture

The overall architecture of the JaSIM platform is shown in Figure 1. JaSIM is
developed in Java 1.6 and composed of four main modules representing a total
of 88,805 lines of code. The various features provided by each module are briefly
described below:

– Janus Wrapper module is an extension of the Janus platform, and con-
situtes the agent-oriented part of the JaSIM platform. It provides a col-
lections of organisations and agent architectures dedicated to simulation. It

4 according to the design-pattern definition of “framework” [8]

Fig. 1. Overall Architecture of JaSIM-Janus MABS Platform

also extends Janus agent and role concepts to speed up the development of
multiagent-based simulation. A collection of tools to manage agent schedul-
ing and probing is also provided by this module.

– OO Environment Model is the main part of the JaSIM platform and pro-
vides all necessary tools to model and manage creation and modification of
environmental structures. It contains in particular all the hierarchical and
graph structures used to manage agent’s perceptions. This module is more
detailed in the next subsection.

– Environmental Interfaces enable connection between a specific application
and JaSIM platform. They provide a full set of agent’s body architectures
for various types of virtual environments. Each kind of body provides to
application agents a collection of tools for perceiving its environment and
emitting influences.

– Listener module is intended to provide a common interface for managing
event-based communication with external tools and graphical user interfaces.
A specific feature of this module enables network-based communication with
a remote application. It is used for managing communication with the Live
graphics engine5.

3.2 JaSIM Environment Model

According to Russel and Norvig [19], JaSIM environment model may be con-
sidered as inaccesible, non-deterministic, dynamic, and continuous. This model
is strongly inspirated by the Influence-Reaction approach [7, 13].

5 Live is developed by the Systems and Transport Laboratory

Fig. 2. The JaSIM Environment Model

The JaSIM environment model does not make any assumption about the
multiagent platform used to execute and design agents. Currently the Janus
platform6 and the TinyMAS platform7 are usable. The only one requirement
to support another platform is to develop a piece of code which is (i) creating
an agent instance, and binding it to an environmental body; and (ii) providing
a scheduling policy which is compatible with the environment execution policy.

As the JaSIM model should be usable even for pedestrian and vehicle sim-
ulations, it is primilary defined with the common features for both types of
simulation. Figure 1 shows the global architecture of an application running the
JaSIM model.

In this section, the JaSIM environment model is described as a design pat-
tern which is applied to produce an executable platform for all supported di-
mensions (1D to 3D, in section 3.3). The JaSIM model assumes that:

– an agent owns a body which is its representation in the physical environment,
this body is part of the environment;

– a body provides a set of sensors (frustums...) and effectors to its associated
agent;

– a body may provide active perceptions;
– an agent can perceive or act on the physical environment only through its

body;
– an agent can not directly change the state of the environment to avoid tem-

poral conflicts of the actions; and
– the environment has its own endogenous dynamics that may be specialised

according to application requirements.

According to these assumptions the JaSIM model is designed with two
“pipelines”: the first one computes the agent’s perceptions from the world hier-
archical or graph-based structures (or world model thereafter), and the second
6 http://www.janus-project.org
7 http://www.arakhne.org/tinymas

pipeline collects the agent’s influences and computes the resulting reactions on
the world model (Figure 2). All these components are detailed in the following
subsections, and they are defined in the UML class diagram in Figure 3.

Perceivable, Influencable and Influencer interfaces describes the main roles
of the environmental components according to the Influence-Reaction approach.
Perceivable interface is implemented by all the entities which may be perceived
by agents. Entities which may be the target of an agent influence must implement
Influencable. And Influencer interface is implemented by the bodies of influence
emitters.

Fig. 3. Simplified UML class diagram for the JaSIM environmental model

3.3 World Model

The model of world contains all data structures required to store and describe
the entities — an agent body is a kind of entity — in the environment. The
world model is divided into two main groups of data structures: (i) the ground
descriptions, and (ii) the object descriptions.

Ground Model This model is mainly used by the perception pipeline and the
“keep-on-floor” heuristic. A ground description is basically a discrete heightmap
which is able to quickly compute the height of each continuous point by using
tri-interpolation equations. More formally, the ground is defined by a surjective
function R×R→ R where the parameters are the 2D coordinates of a point on
the ground and the replied value is the interpolated-height. The implementation
of the ground function may be based on a regular or an irregular grid [16, 3].

Ground is also used to quickly detect non-traversable areas by the influence-
reaction pipeline presented below.

Object-Space Model An object-space model is able to quickly provide infor-
mation on the location and the orientation of each entity in the world, and to
manipulate them. Here the dimension of the space is a important choice. JaSIM
environment model is developed to support 1D, 11

2D, 2D, and 3D dimensions.
Each implementation provides a specific world model to improve query perfor-
mances, and respecting the environment’s mission M1.

The 1−dimension world model is based on a directed or non-directed graphs
(depending on GIS imported data) on which each entity is located according to
a curvilinear abscissa x. The orientation of the entity may be colinear to the
graph’s segment or defined by a rotation angle [14]. The 1 1

2−dimension world
model is an extension of the 1−dimension model. Each entity is located with its
curvilinear abscissa x and a shifting distance y from the graph’s segment (along
the normal segment). These two dimensions are assumed to be out of the scope
of this paper.

The 2− and 3−dimension world models are similar and uses equivalent data
structures: spatial trees. According to [20] and for performance reasons, the
JaSIM environment model is using two trees: (i) the first one is containing the
immobile entities, and (ii) the second, the mobile entities. Mobile entities may
be agent’s bodies or non-autonomous objects.

A spatial tree uses a partition heuristic to hierarchically decomposed the
space into subspaces. The JaSIM model is providing different implementations
of well-known trees traditionally used in Game and Serious-Game theories: bi-
nary space partition (BSP) tree, quadtree, and octree. They respectively divide
the space into two, four and eight subspaces. In JaSIM the cutting planes8 are
assumed to be parallel to the world’s axis by default. This choice is introduced
to simplify and speed up the building process of the trees.

Two key points have still a great influence on the access/query performances
of the trees: (i) the position of the cutting planes, and (ii) the heuristic used
to classify the entities which are intersecting one or more cutting planes. The
cutting planes may be located at the center of the space to partition or at
the barycenter of the entities located in that subspace. Four possibilities are
theoritically available to classify an entity which is intersecting one or more
cutting planes:

1. split the entity mesh into several parts and put each of them into a child
node;

2. clone the entity and put the clones into the child nodes;
3. put the entity in the current node, not in the child node;
4. create a new specific child node — icosep node [20] — and put the intersect-

ing entity into.

8 A cutting plane is a plane which is separating two adjacent subspaces.

BSP Cut plane

Entities

clone

1

1
2 2

3

4

left right icoleft right

Fig. 4. Cutting plane heuristics on a BSP example

Figure 4 illustrates these four approaches. In this example three entities are
located in space; the upper part of the figure illustrates the locations of three en-
tities and the cutting plane. The lower-left tree is a standard BSP tree. According
to the cutting plane classification, the hexagon and the triangle are respectively
located in the left and right child. As the cross is located on the cutting plane,
it is classified according to the previous approaches — the number near/on the
cross identifies the selected case. The lower-right tree is a BSP tree using the
icosep heuristic. In this case the intersecting entity is directly put into the icosep
node.

Cases 1 and 3 are too much time consuming: continously splitting and merg-
ing the entity meshes firstly, and secondly retreiving all the entity clones in the
tree harm the initial logarithmic complexity of tree queries. Case 4 is prefered to
Case 3 because it enables to recursively partition the icosep node according to a
dedicated heuristic. In [20] each half-cutting plane has its own icosep node but
this last is not splitted in turn. This may lead to big tree nodes that contain an
important number of objects. Traversing such nodes significantly increases the
overall computational cost of a tree query.

A key point in our world model is that the entities are represented by bound-
ing boxes and simplified meshes. The bounding boxes are used as default vol-
umetric representation of the entities. Meshes are only used to compute the
bounding boxes or to support the occlusion culling. Bounding boxes are basicaly
used in 3D rendering to preserve computational time because they provide quick
intersection tests.

3.4 Perception Pipeline

The perception pipeline aims at computing a set of perceptions for each agent
(environment mission M3) according to the environment’s laws and agent’s pref-
erences specified in its body.

In this paper, we refer to perception as a generic term which encapsulate all
the classical human senses. The current implementation of the JaSIM model is
providing two cascading vision cullers (frustum culler and occlusion culler). The
smell, hearing, taste and touch perceptions are not provided yet.

Visual perception is firstly based on a frustum culler which selects the en-
tities that are partly or entirely inside the agent’s frustum. They are selected
by recursively traverse the tree nodes in intersection with the frustum. Bound-
ing boxes permit to quickly exclude the nodes — consequently the child nodes
— which have no possible intersection with the frustum. Finally from each se-
lected nodes, entities are matched against the frustum and replied if they have
an intersection. The frustum culler is able to quickly determine the type of in-
tersection: outside, entirely inside, partly inside, or enclosing the frustum. The
complexity of a culling query is O(log n) where n is the count of nodes in the
tree, experimental results are given in table 1.

Then, an occlusion culler is used to determine if an entity is partly or com-
pletely occluded by another one, or not. The occlusion culler uses a depth-buffer
approach [1], well-known in 3D rendering. As this culler is very time consuming,
it is not activated by default.

3.5 Influence-Reaction Pipeline

The influence-reaction pipeline is inspirated by [13] and manages environment’s
mission M2. First, an influence collector is collecting all the influences emitted
by the agents through their bodies, or by the environment itself. When all the
influences are collected, the environment is trying to detect conflicts according
to its internal laws. For each nonconflicting influence a reaction is directly com-
puted. For conflicting influences a reaction is computing according to resolution
heuristics. The JaSIM model uses a “keep-on-floor” heuristic, which forces the
bodies to be on the ground, and a collision detection algorithm [5].

3.6 Body Interface

The body interface is the mode used by the agents to interact with the physical
space. In addition to the definition of the physical location, the orientation and
the shape of an agent, the body acts as the filter between the agent model
and the environment model. It owns various perception frustums. The JaSIM
environment model is providing three predefined types of frustums: a sphere, a
truncated pyramid, and a pedestrian frustum — a frustum composed by a sphere
(short-range perception) and a truncated pyramid (long-range perception). The
agent may put in its body several functions which are acting as filters on the
perceptions. These functions, also named “active perception functions”, enable to
speed up the selection of the perceived entities. A body has also a set of kinematic
properties updated by the environment (acceleration, speed...) according to the
reactions to the influences.

Finally, a body is able to convert data from the environment’s format to the
agent’s desired format. This last point permits in particular to implement an

(a) Example of pedestrian simulation

 0

 500

 1000

 1500

 2000

 2500

 0 100 200 300 400 500 600 700 800 900 1000

C
om

pu
ta

tio
n

T
im

e
(m

s)

Agent count

perception generator
environment

agents+environment

(b) Performances on selected case studies

Fig. 5. Study Case Experiments

agent model with a given space dimension (1D to 3D) independently from the
dimension of the environment. Data conversion is done thanks to convertion rules
defined in the bodies. These rules are based on the mathematical transformations
of the points and the vectors from a coordinate system to the other. For example,
from the 3D left-handed coordinate system with z axis up to the 2D right-handed
coordinate system, the point 〈1, 2, 3〉 is transformed to 〈1,−2〉.

3.7 Endogenous Dynamics

The environment has also its intrinsic dynamic [11], and it may evolve beyond
the agent control. This phenomena is modelled by the endogenous dynamics
engine in JaSIM (mission M4). All the physics laws from the real world may
be implemented in this engine. The JaSIM implementation is able to use the
NVidia PhysX

9 and the ODE10 physics engines well-known in 3D real-time
applications.

4 Experimental Results

The JaSIM platform is deployed and tested on two case studies. The goal of
these experiments is to compare the performances of the different modules of the
environment model against the size of the agent population. The first study case
is related to a crowd simulation during a famous european rock festival which is
taking place near Belfort. The second case study is a simulation of pedestrians
in a Belfort’s industrial area. Both case studies focus on bottleneck detection
and flow quantification. They are generated from real data sets (geographical
information systems, buildings photos...). Figure 5(a) illustrates the second case
study with a pedestrian and its pedestrian frustum.

9 http://www.nvidia.com/object/physx new.html
10 http://www.ode.org

Frustum
Sphere Pyramid Pedestrian

BSP µ = 0.02 µ = 0.04 µ = 0.04
σ = 0.01 σ = 0.01 σ = 0.01

Icosep-BSP µ = 0.02 µ = 0.03 µ = 0.04
σ = 0.01 σ = 0.01 σ = 0.01

QuadTree µ = 0.02 µ = 0.04 µ = 0.04
σ = 0.01 σ = 0.01 σ = 0.01

Icosep-QuadTree µ = 0.03 µ = 0.04 µ = 0.04
σ = 0.01 σ = 0.01 σ = 0.01

Table 1. Numerical results for one frustum culling query – average µ and standard
deviation σ in ms

Benchmarks are run on Linux operating system with a 1.2GHz dual-core
processor and 2Go of RAM. Simulation is running under the 1.6 Sun’s Java
virtual machine with 64Mo of allocated memory. Agent models are implemented
as holons on the Janus platform. Figure 5(b) illustrates the performances of the
simulation.

Figure 5(b) shows that the major part of the environment’s computation
time is consumed by the perception generator. Indeed, for each agent’s body in
the environment a visual perception is computed. The complexity of the per-
ception generator is O(k.m log n) where k is the count of agent’s bodies in the
environment, log n is the complexity of a query on the trees when it is reasonably
balanced. m is the factor introduced by the current implementation of JaSIM.
The poor performances of the perception generator implementation is currently
due to internal copies of the perception collections before passing them to the
agents. Table 1 contains the computation times for the queries on the three
types of tree with the three types of supported frustums. The influence of each
data structure on the overall simulation time is limited and follows a logarithmic
curve.

5 Conclusion

Situated environment is a key concept in MABS, however it remains barely
considered as a first-class entity. JaSIM environment model gathers the envi-
ronment definition from MAS literature, the Influence-Reaction approach, with
the standard data structures used in real-time 3D rendering. Combined with
Janus, JaSIM is able to simulate crowd and traffic flows with 3D-based senses
and actions. This paper describes the platform architectures and illustrates its
proof of concept on two case studies. The platform is successfully used on the
simulation of a rock festival (up to 5,000 pedestrians), industrial area traffic
(1,000 vehicles), and Orly airport hall (3,000 pedestrians). In the opposite of
Massive or Breve, JaSIM is not focussed on the simulation of the human bodies
and there physical interactions. Its first purpose is to provide efficent, accurate

and realistic perceptions to numerous agents. Another key point of JaSIM is
its ability to merge different points of view (pedestrian, vehicle, cycle...) in the
same simulation model.

To improve the support of large-scale simulations (more than 5,000 entities)
by the platform, multilevel models will be introduced both in the agents and
environment models. In conjunction with environmental topological hierarchies
it should permit to enlarge the number of simulated entities as well as the size and
complexity of the simulated space. Relationships between the different points of
view (vehicle, pedestrian, economical entities...) of the system will be also studied
and improved in future works.

Acknowledgement. The JaSIM platform is distributed as part of the SIMULATE

commercial offer of the Voxelia SAS11 company, France. The authors would like to

thank Mickael Goncalves, Renan Zeo and Olivier Lamotte for their support and con-

tributions.

Bibliography

[1] Thomas Akenine-Möller, Eric Haines, and Natty Hoffman. Real-Time Rendering.
A.K. Peters, Ltd., Natick, MA, USA, 3rd edition edition, 2008.

[2] S. Brueckner. Return from the Ant. Computer science, Humboldt-Universität,
Berlin, Germany, 2000.

[3] L. De Floriani and P. Magillo. Regular and Irregular Multi-Resolution Terrain
Models: a Comparison. In A. Voisard and S.-C. Chen, editors, 10th ACM In-
ternational Symposium on Advances in Geographic Information Systems (ACM-
GIS’02), pages 143–148, McLean, VA, November 2002.

[4] Stephane Donikian. Vuems: A virtual urban environment modeling system.
Computer Graphics International Conference, 0:84, 1997. doi: http://doi.
ieeecomputersociety.org/10.1109/CGI.1997.601278.

[5] Christer Ericson. Real-Time Collision Detection. Interactive 3D Technology. Mor-
gan Kaufmann, 2004.

[6] Nathalie Farenc, Ronan Boulic, and Daniel Thalmann. An informed environment
dedicated to the simulation of virtual humans in urban context. In Proceedings of
EUROGRAPHICS99, pages 309–318, 1999.

[7] J. Ferber, F. Michel, and J. Baez. AGRE: Integrating environments with orga-
nizations. In Danny Weyns, H. Van Dyke Parunak, and Fabien Michel, editors,
Third International Workshop (E4MAS 2006), volume 4389 of Lecture Notes in
Artificial Intelligence, pages 48–56. Springer, Hakodate, Japan, may 2006.

[8] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley Profes-
sional Computing. Addison-Wesley Professional, November 1994.

[9] Nicolas Gaud, Stéphane Galland, Vincent Hilaire, and Abderraff́ıâa Koukam.
An Organisational Platform for Holonic and Multiagent Systems. In PROMAS-
6@AAMAS’08, Estoril, Portugal, May 12-16th 2008.

[10] C. Greenhalgh and S. Benford. Massive: a distributed virtual reality system in-
corporating spatial trading. In ICDCS ’95: Proceedings of the 15th International

11 http://www.voxelia.com

Conference on Distributed Computing Systems, page 27, Washington, DC, USA,
1995. IEEE Computer Society.

[11] A. Helleboogh, G. Vizzari, A. Uhrmacher, and F. Michel. Multi-Agent Modeling
and Simulation: Dynamis in the Environment. Journal of Autonomous Agents
and Multi-Aent Systems (JAAMAS), 14(1):87–116, feb 2007. ISSN 1387-2532.

[12] Jon Klein. breve: a 3d environment for the simulation of decentralized systems
and artificial life. In ICAL 2003: Proceedings of the eighth international conference
on Artificial life, pages 329–334, Cambridge, MA, USA, 2003. MIT Press. ISBN
0-262-69281-3.

[13] Fabien Michel. The IRM4S model: the influence/reaction principle for multiagent
based simulation. In Sixth International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS07). ACM, May 2007. ISBN 978-81-904262-7-5.
doi: http://doi.acm.org/10.1145/1329125.1329289.

[14] Ian Millington. Artificial Intelligence for Games. Interactive 3D Technology.
Morgan Kaufmann, San Francisco, CA, 2006.

[15] J. Odell, H.V.D. Parunak, M. Fleisher, and S. Brueckner. Modeling Agents and
their Environment. In F. Giunchiglia, J. Odell, and G. Weiss, editors, Agent-
Oriented Software Engineering III, volume 2585 of Lecture Notes In Computer
Science, N.Y. (USA), 2002. Springer-Verlag.

[16] Renato Pajarola and Enrico Gobbetti. Survey of semi-regular multiresolution
models for interactive terrain rendering. The Visual Computer, 23(8):583–605,
aug 2007.

[17] Y. Papelis and S. Bahauddin. Logical modeling of roadway environment to support
real-time simulation of autonomous traffic. In SIVE95: the First Workshop on
Simulation and Interaction in Virtual Environments, volume 1, pages 62–7, Iowa,
Iowa City, U.S.A., July 1995.

[18] Julien Pettré, Pablo de Heras Ciechomski, Jonathan Mäım, Barbara Yersin, Jean-
Paul Laumond, and Daniel Thalmann. Real-time navigating crowds: scalable
simulation and rendering: Research articles. Computer Animation and Virtual
Worlds, 17(3-4):445–455, 2006. ISSN 1546-4261.

[19] Stuart Russel and Peter Norvig. Artificial Intelligence: A Modern Approach. Pren-
tice Hall, 2nd edition edition, 2003.

[20] Joshua Shagam. Dynamic spatial partitioning for real-time visibility determina-
tion. Computer science, New Mexico State University, Department of computer
science, April 2003.

[21] Wei Shao and Demetri Terzopoulos. Autonomous Pedestrians. Graphics Models,
69(5–6):246–274, sep 2007. Special Issue on SCA 2005.

[22] Gwenola Thomas. Environnements virtuels urbains : modélisation des informa-
tions nécessaires la simulation de piétons. PhD thesis, Informatique, Université
de Rennes 1, 16 décembre 1999.

[23] D. Weyns and T. Holvoet. A Formal Model for Situated Multiagent Systems.
Special Issue of Fundamenta Informaticae, 63(2), 2004.

[24] Danny Weyns, H. Van Dyke Parunak, Fabien Michel, Tom Holvoet, and Jacques
Ferber. Environments for Multiagent Systems State-of-the-Art and Research Chal-
lenges. In Danny Weyns, H. Van Dyke Parunak, and Fabien Michel, editors, Third
International Workshop (E4MAS 2006), volume 4389 of Lecture Notes in Artificial
Intelligence, pages 1–47. Springer, Hakodate, Japan, may 2006.

[25] Bernard P. Zeigler, Tag Gon Kim, and Herbert Praehofer. Theory of Modeling
and Simulation. Academic Press, 2nd edition edition, 2000.

